

# Background material for the Danish country report to the SoW-AnGR rapport

Baggrundsmateriale til den danske rapport om Husdyrgenetisk ressourcer



# **Chapter 1.** Introducing the Country

Table 1.1 Importance of livestock to the gross domestic product in agriculture (millions of \$US)

| A ctivity                                           | \$US (m illions) | Data from Year |
|-----------------------------------------------------|------------------|----------------|
| Livestock production (official statistics)          | \$4.433          | 1999           |
| Other agricultural production (official statistics) | \$2.848          |                |
|                                                     |                  | 1999           |
| Best estimate of additional value of livestock      | \$1.000          | 1999           |

#### Comments:

- Best estimate of additional value includes the value of all perceived contributions of livestock to agricultural services, other than food production, e.g. value of fertilizer from animal production, draught and transportation, forage production, etc., which usually are not costed in standard calculations.
- Livestock includes domestic ruminants, non-ruminants, and birds used for food and agriculture.

Source: Danmarks Statistik – 2000

Table 1.2 Land use and current trends (1000 ha)

|                    | Area (1000 ha) | Area (1000 ha) | Current trend |
|--------------------|----------------|----------------|---------------|
| Category           | 1990           | 1999           |               |
| Arable land        | 2788           | 2647           | -             |
| Permanent crops    | 22             | 40             | ++            |
| Permanent pastures | 217            | 358            | +             |
| Agricultural area  | 3062           | 2878           | -             |
| Land area          | 4240           | 4240           | 0             |
| Total Area         | 4310           | 4310           |               |

Source: Danmarks Statistik 1990 and 2000.

- Arable land: land under temporary crops (double-cropped areas are counted only once), temporary meadows for mowing or pasture, land under market and kitchen gardens and land temporarily fallow (less than five years). The abandoned land resulting from shifting cultivation is not included in this category. Data for "Arable land" are not meant to indicate the amount of land that is potentially cultivable.
- Permanent crops: Includes cultures of spruce mainly Norman and Nobilis, which occupies arable land.
- Permanent pasture: land used permanently (five years or more) for herbaceous forage crops, either cultivated or growing wild (wild prairie or grazing land).
- Land area: total area excluding area under inland water.
- Total area: the total area of the country, including area under inland water.
- Indicate current trends in relation to the latest available year (-- = strongly decreasing, = decreasing, 0 = stable, + = increasing, ++ = strongly increasing).

Table 1.3 Land use for livestock and current trends

|                            | Area (1000 ha) | Area (1000 ha) | Current trend |
|----------------------------|----------------|----------------|---------------|
| Category                   | 1990           | 1999           |               |
| Cropping for food          | 28             | 22             | -             |
| Cropping for feed          | 326            | 433            | +             |
| Cropping for food and feed | 1889           | 1651           | -             |
| Natural pasture            | 65             | 65             | 0             |
| Improved pasture           | 152            | 152            | 0             |
| Fallow                     | 3              | 215            | ++            |
| Forest                     | 275            | 486            | +             |
| Non-agricultural           | 324            | 106            |               |
| Total                      | 3062           | 3130           |               |

Source: Agricultural Statistics 1991 and 2000, and Danish Forest and Nature Agency 1997

#### Comments:

- Natural pastures are the ones grown without any external inputs.
- Fallow is a non-cultivated cropping land put on rest.
- Indicate current trends in relation to the latest available year (-- = strongly decreasing, = decreasing, 0 = stable, + = increasing, ++ = strongly increasing).

Table 1.3.1 Marginal agricultural area

| Category             | Area (1000 ha) | % of land area |   |
|----------------------|----------------|----------------|---|
| Meadows              | 104            | 2,4            | ŀ |
| Salt meadows (marsh) | 44             | 1              |   |
| Heath                | 82             | 1,9            | 9 |
| Dry grassland        | 26             | 0,6            | 3 |
| Total                | 256            | 5,9            | ) |
|                      |                |                |   |
|                      |                |                |   |
|                      |                |                |   |
|                      |                |                |   |
|                      |                |                |   |

Source: Danish Forest and Nature Agency 1997

**Table 1.4** Land tenure for livestock production

| Category                | Area (1000 ha) | %   |
|-------------------------|----------------|-----|
| Private                 | 2734           | 95  |
| Government and communal | 144            | 5   |
| Total                   | 2878           | 100 |

### Comments:

- Private includes the private sector and the long term leasing.
- Include all land for which the primary purpose of its use is livestock production.

Source: Danmarks Statistik 2000.

**Table 1.5** Farm structure and distribution



| Category        | Number of farms | %   | Number of farms / house- | %   |
|-----------------|-----------------|-----|--------------------------|-----|
|                 | / households    |     | holds with livestock     |     |
| Landless        | 0               | 0   | 0                        | 0   |
| > 0 to 2 ha     | 1300            | 2   | 990                      | 3   |
| > 2 to 10 ha    | 8903            | 15  | 7000                     | 20  |
| > 10 to 50 ha   | 26736           | 46  | 16379                    | 47  |
| > 50 to 100 ha  | 10891           | 19  | 5000                     | 14  |
| > 100 to 500 ha | 6210            | 11  | 1500                     | 4   |
| > 500 ha        | 500             | 1   | 210                      | 1   |
| Unknown         | 3291            | 6   | 3621                     | 10  |
| Total           | 57831           | 100 | 34700                    | 100 |

Source: Modified from Danmarks Statistik 2000

Table 1.6 Livestock population, number of owners/house-holders and employment by species

|                  | Livestock<br>population<br>(1000) | Number of owners<br>/ householders |  |
|------------------|-----------------------------------|------------------------------------|--|
| Species          | ,                                 |                                    |  |
| Cattle           | 1868                              | 23031                              |  |
| Buffalo          |                                   |                                    |  |
| Sheep            | 118                               | 9000                               |  |
| Goats            | 10                                | 1750                               |  |
| Camels           |                                   |                                    |  |
| Lamas and Alpaca |                                   |                                    |  |
| Horses *)        | 40                                | 7959                               |  |
| Donkeys          |                                   |                                    |  |
| Pigs             | 11922                             | 13231                              |  |
| Chicken          | 37028                             | 6104                               |  |
| Turkey           | 546                               | 60                                 |  |
| Ducks            | 296                               | 393                                |  |
| Geese            | 7                                 | 442                                |  |
| Rabbits          |                                   |                                    |  |
| Mink             | 2188                              | 2523                               |  |
| Total            | 54023                             | 64493                              |  |

Source: Agricultural Statics 2000. Numbers on sheep and goats from the national data base on registered livestock, 2003.

<sup>\*)</sup> Includes only horses on agricultural farms, the total number of horses in Denmark is estimated to 150.000 (Source: The horse industry in the European Union, 2001)



**Table 1.7 Human population in the country** 

| Year                       | Total (millions) | Rural or Farming (%) | Urban or Non Farming (%) | Total |
|----------------------------|------------------|----------------------|--------------------------|-------|
| 1990                       | 5135             | 44                   | 56                       | 100   |
| 1999                       | 5330             | 48                   | 52                       | 100   |
| Average annual growth rate | +0.4%            | +1.2%                | -0.3%                    |       |

Source: Danmarks Statistik 2000

# Comments:

"Urban population" is defined as people living in cities larger than 10.000 inhabitants.

 Table 1.8
 Major livestock primary production (1000 tonnes/numbers)

|                  | Meat (t) |        | Mil  | Milk (t) |      | s (t) | Fib  | er (t) | Skin  | Skin (No.) |  |
|------------------|----------|--------|------|----------|------|-------|------|--------|-------|------------|--|
| Species          | 1990     | 1999   | 1990 | 1999     | 1990 | 1999  | 1990 | 1999   | 1990  | 1999       |  |
| Cattle           | 219,1    | 167    | 4742 | 4655     |      |       |      |        | 888   | 772        |  |
| Buffalo          |          |        |      |          |      |       |      |        |       |            |  |
| Sheep            | 1,6      | 1,5    |      |          |      |       |      |        |       |            |  |
| Goats            | NI       | NI     | NI   | NI       |      |       |      |        |       |            |  |
| Camels           |          |        |      |          |      |       |      |        |       |            |  |
| Lamas and Alpaca |          |        |      |          |      |       |      |        |       |            |  |
| Horses           | 1,0      | 1,3    |      |          |      |       |      |        |       |            |  |
| Donkeys          |          |        |      |          |      |       |      |        |       |            |  |
| Pigs             |          | 1748,2 |      |          |      |       |      |        |       |            |  |
| Chicken          | 131,4    | 204,7  |      |          | 82,4 | 78,2  |      |        |       |            |  |
| Turkey           |          |        |      |          |      |       |      |        |       |            |  |
| Ducks            | NI       | NI     |      |          |      |       |      |        |       |            |  |
| Geese            | NI       | NI     |      |          |      |       |      |        |       |            |  |
| Rabbits          | NI       | NI     |      |          |      |       |      |        |       |            |  |
| Mink             |          |        |      |          |      |       |      |        | 10000 | 10500      |  |
|                  |          |        |      |          |      |       |      |        |       |            |  |
|                  |          |        |      |          |      |       |      |        |       |            |  |

Source: Agricultural Statistics 2000, and Danish Meat Board

NI: No information available



Table 1.9 Major livestock primary product imports (1000 tonnes/numbers)

|           | Meat (t) |      | Milk | (t)  | Egg  | s (t) | Fibe | er (t) | Skin | (No.) | Animals | (No.) |
|-----------|----------|------|------|------|------|-------|------|--------|------|-------|---------|-------|
| Species   | 1990     | 1999 | 1990 | 1999 | 1990 | 1999  | 1990 | 1999   | 1990 | 1999  | 1990    | 1991  |
| Cattle    | 0        | 86.8 | 0    | 380  |      |       |      |        |      |       |         |       |
| Buffalo   |          |      |      |      |      |       |      |        |      |       |         |       |
| Sheep     |          |      |      |      |      |       |      |        |      |       |         |       |
| Goats     |          |      |      |      |      |       |      |        |      |       |         |       |
| Camels    |          |      |      |      |      |       |      |        |      |       |         |       |
| Lamas and |          |      |      |      |      |       |      |        |      |       |         |       |
| Alpaca    |          |      |      |      |      |       |      |        |      |       |         |       |
| Horses    |          |      |      |      |      |       |      |        |      |       |         |       |
| Donkeys   |          |      |      |      |      |       |      |        |      |       |         |       |
| Pigs      |          |      |      |      |      |       |      |        |      |       |         |       |
| Chicken   |          |      |      |      | 9    | 25    |      |        |      |       |         |       |
| Turkey    |          |      |      |      |      |       |      |        |      |       |         |       |
| Ducks     |          |      |      |      |      |       |      |        |      |       |         |       |
| Geese     |          |      |      |      |      |       |      |        |      |       |         |       |
| Rabbits   |          |      |      |      |      |       |      |        |      |       |         |       |
|           |          |      |      |      |      |       |      |        |      |       |         |       |
|           |          |      |      |      |      |       |      |        |      |       |         |       |
|           |          |      |      |      |      |       |      |        |      |       |         |       |

Table 1.10 Major livestock primary product exports (1000 tonnes/numbers)

|           | Mea  | at (t) | Mill | ( (t) | Egg  | s (t) | Fibe | r (t) | Skin (No.) |      | Animals (No.) |      |
|-----------|------|--------|------|-------|------|-------|------|-------|------------|------|---------------|------|
| Species   | 1990 | 1999   | 1990 | 1999  | 1990 | 1999  | 1990 | 1999  | 1990       | 1999 | 1990          | 1991 |
| Cattle    |      | 125    |      | 3397  |      |       |      |       |            |      |               |      |
| Buffalo   |      |        |      |       |      |       |      |       |            |      |               |      |
| Sheep     |      |        |      |       |      |       |      |       |            |      |               |      |
| Goats     |      |        |      |       |      |       |      |       |            |      |               |      |
| Camels    |      |        |      |       |      |       |      |       |            |      |               |      |
| Lamas and |      |        |      |       |      |       |      |       |            |      |               |      |
| Alpaca    |      |        |      |       |      |       |      |       |            |      |               |      |
| Horses    |      |        |      |       |      |       |      |       |            |      |               |      |
| Donkeys   |      |        |      |       |      |       |      |       |            |      |               |      |
| Pigs      |      | 1449   |      |       |      |       |      |       |            |      |               |      |
| Chicken   |      | 126    |      |       |      |       |      |       |            |      |               |      |
| Turkey    |      |        |      |       |      |       |      |       |            |      |               |      |
| Ducks     |      |        |      |       |      |       |      |       |            |      |               |      |
| Geese     |      |        |      |       |      |       |      |       |            |      |               |      |
| Rabbits   |      |        |      |       |      |       |      |       |            |      |               |      |
| Mink      |      |        |      |       |      |       |      |       |            |      |               |      |
|           |      |        |      |       |      |       |      |       |            |      |               |      |
|           |      |        |      |       |      |       |      |       |            |      |               |      |

Source: Agricultural Statistics 2000



# **Chapter 2.** The State of Production Systems

# Justification and Use

The purpose of this chapter is to get a clear picture on the distribution of livestock species and their role by major production systems. Changes in major production systems over time for major species are monitored. Production systems are defined according to the level of inputs used.

- Production System: all input-output relationships, over time, at a particular location. The relationships will include biological, climatic, economic, social, cultural and political factors, which combine to determine the production of a particular livestock enterprise. Also termed Production Environment. Production systems range from areas where there is very little husbandry or human modification of the environment, to very intensive management systems where feed, climate, disease and other factors are controlled or managed by farmers. The level of animal husbandry or intervention varies enormously from region to region and from farm to farm. Thus, a common way to classify production environments is to group them according to the level of human intervention as:
  - **High-input Production System:** a production system where all rate-limiting inputs to animal production can be managed to ensure high levels of animal survival, reproduction and output. Output is constrained primarily by managerial decisions.
  - **Medium-input Production System:** a production system where management of the available resources has the scope to overcome the negative effects of the environment, although it is common for one or more factors to limit output, survival or reproduction in a serious fashion.
  - Low-input Production System: a production system where one or more ratelimiting inputs impose continuous or variable severe pressure on livestock, resulting in low survival, reproductive rate or output. Output and production risks are exposed to major influences, which may go beyond human management capacity.



**Table 2.3.1** Type of livestock farm by production system for dairy cattle - Herds(%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation      | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial | 2                  | 2            | 4          | 8     |
| Large-scale-commercial |                    | 18           | 74         | 92    |

Comments: Small-scale-commercial: less than 15 cows/herd

 Table 2.3.2
 Type of livestock farm by production system for dairy cattle - Production (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation      | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial | 1                  | 1            | 3          | 5     |
| Large-scale-commercial |                    | 10           | 85         | 95    |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 15 cows/herd

Table 2.3.3 Type of livestock farm by production system for beef cattle - Herds (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation      | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial | 23                 | 39           | 15         | 77    |
| Large-scale-commercial | 3                  | 12           | 8          | 23    |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 15 cows/herd

Table 2.3.4 Type of livestock farm by production system for beef cattle - Production (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation      | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial | 10                 | 22           | 11         | 43    |
| Large-scale-commercial | 5                  | 30           | 22         | 57    |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 15 cows/herd

Table 2.5.1 Type of livestock farm by production system for sheep - Herds (%)

|                        | Р         | Production systems |            |       |
|------------------------|-----------|--------------------|------------|-------|
| Type of operation ')   | Low input | Medium input       | High input | Total |
| Subsistence            | 20        | 20                 | 0          | 40    |
| Smallholder            | 10        | 10                 | 2          | 22    |
| Small-scale-commercial | 5         | 5                  | 5          | 15    |
| Large-scale-commercial | 3         | 8                  | 12         | 23    |

Comments: \*) According to flock size: a) 1-9 ewes, b) 10-24, c) 25-49 d) GE 50

Table 2.5.2 Type of livestock farm by production system for sheep - Production (%)

|                        | Р         | Production systems  |            |       |
|------------------------|-----------|---------------------|------------|-------|
| Type of operation *)   | Low input | <b>Medium input</b> | High input | Total |
| Subsistence            | 2         | 2                   | 0          | 4     |
| Smallholder            | 3         | 4                   | 1          | 8     |
| Small-scale-commercial | 3         | 4                   | 6          | 13    |
| Large-scale-commercial | 10        | 26                  | 39         | 75    |

Source: Agricultural Statistics 2000

Comments: \*) According to flock size: a) 1-9 ewes, b) 10-24, c) 25-49 d) GE 50

Table 2.11.1 Type of livestock farm by production system for pigs - Herds (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation *)   | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial |                    |              | 41         | 41    |
| Large-scale-commercial |                    |              | 59         | 59    |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 50 sows/herd

**Table 2.11.2** Type of livestock farm by production system for pigs - Production (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation *)   | Low input          | Medium input | High input | Total |
| Subsistence            |                    |              |            | 0     |
| Smallholder            |                    |              |            | 0     |
| Small-scale-commercial |                    |              | 4          | 4     |
| Large-scale-commercial |                    |              | 96         | 96    |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 50 sows/herd



Table 2.12.1 Type of livestock farm by production system for Egg layers- Herds (%)

|                        | Р         | Production systems |            |       |
|------------------------|-----------|--------------------|------------|-------|
| Type of operation *)   | Low input | Medium input       | High input | Total |
| Subsistence            | 92        | 0                  | 0          | 92    |
| Smallholder            | 1         | 2                  | 0          | 3     |
| Small-scale-commercial | 0         | 2                  | 1          | 3     |
| Large-scale-commercial | 0         | 0                  | 2          | 2     |

Comments: \*) According to flock size: 1-99, 100-999, 1000-9999, GE 10000 hens/farm

Table 2.12.2 Type of livestock farm by production system for Egg layers - Production (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation *)   | Low input          | Medium input | High input | Total |
| Subsistence            | 2                  | 0            | 0          | 2     |
| Smallholder            | 0                  | 1            | 0          | 1     |
| Small-scale-commercial | 0                  | 10           | 13         | 23    |
| Large-scale-commercial | 0                  | 14           | 60         | 74    |

Source: Agricultural Statistics 2000

Comments: \*) According to flock size: 1-99, 100-999, 1000-9999, GE 10000 hens/farm

Table 2.12.3 Type of livestock farm by production system for Broilers - Herds (%)

|                        | Production systems |              |            |       |
|------------------------|--------------------|--------------|------------|-------|
| Type of operation *)   | Low input          | Medium input | High input | Total |
| Subsistence            | 25                 | 26           | 0          | 51    |
| Smallholder            | 3                  | 4            | 0          | 7     |
| Small-scale-commercial | 0                  | 13           | 20         | 33    |
| Large-scale-commercial | 0                  | 0            | 9          | 9     |

Source: Agricultural Statistics 2000

Comments: \*) According to annual production: 1-499, 500-24999, 25000-99999, GE 100000 chickens/farm

**Table 2.12.4** Type of livestock farm by production system for Broilers - Production (%)

|                        | Р         | Production systems |            |       |  |
|------------------------|-----------|--------------------|------------|-------|--|
| Type of operation *)   | Low input | Medium input       | High input | Total |  |
| Subsistence            | 0         | 1                  | 0          | 1     |  |
| Smallholder            | 1         | 2                  | 0          | 3     |  |
| Small-scale-commercial | 0         | 22                 | 34         | 56    |  |
| Large-scale-commercial | 0         | 0                  | 40         | 40    |  |

Source: Agricultural Statistics 2000

Comments: \*) According to annual production: 1-499, 500-24999, 25000-99999, GE 100000 chickens/farm



Table 2.17.1 Type of livestock farm by production system for Mink - Herds (%)

|                        | Р         | Production systems |            |       |  |  |  |  |  |
|------------------------|-----------|--------------------|------------|-------|--|--|--|--|--|
| Type of operation      | Low input | Medium input       | High input | Total |  |  |  |  |  |
| Subsistence            |           |                    |            | 0     |  |  |  |  |  |
| Smallholder            |           |                    |            | 0     |  |  |  |  |  |
| Small-scale-commercial |           |                    | 31         | 31    |  |  |  |  |  |
| Large-scale-commercial |           |                    | 69         | 69    |  |  |  |  |  |

Comments: Small-scale-commercial: Less than 1000 animals

**Table 2.17.2** Type of livestock farm by production system for mink - Production (%)

|                        | Р         | Production systems |            |       |  |  |  |  |  |
|------------------------|-----------|--------------------|------------|-------|--|--|--|--|--|
| Type of operation      | Low input | Medium input       | High input | Total |  |  |  |  |  |
| Subsistence            |           |                    |            | 0     |  |  |  |  |  |
| Smallholder            |           |                    |            | 0     |  |  |  |  |  |
| Small-scale-commercial |           |                    | 25         | 25    |  |  |  |  |  |
| Large-scale-commercial |           |                    | 75         | 75    |  |  |  |  |  |

Source: Agricultural Statistics 2000

Comments: Small-scale-commercial: Less than 1000 animals

Of 2,523 farms mink farms in 2002, only 1,441 were registered as agricultural farms.

Table 2.18.1 Type of livestock farm by production system for turkey – Herds (%)

|                        | Р         | Production systems |            |       |  |  |  |  |  |  |
|------------------------|-----------|--------------------|------------|-------|--|--|--|--|--|--|
| Type of operation *)   | Low input | Medium input       | High input | Total |  |  |  |  |  |  |
| Subsistence            | 95        |                    |            | 95    |  |  |  |  |  |  |
| Smallholder            |           |                    |            | 0     |  |  |  |  |  |  |
| Small-scale-commercial |           | 4                  |            | 4     |  |  |  |  |  |  |
| Large-scale-commercial |           |                    | 1          | 1     |  |  |  |  |  |  |

Source: Agricultural Statistics 2000

Comments: \*) According to annual production: 1-499, 500-24999, 25000-99999, GE 100000 chickens/farm

Table 2.18.2 Type of livestock farm by production system for Turkey - Production(%)

|                        | Р         | Production systems |            |       |  |  |  |  |  |
|------------------------|-----------|--------------------|------------|-------|--|--|--|--|--|
| Type of operation *)   | Low input | Medium input       | High input | Total |  |  |  |  |  |
| Subsistence            | 1         |                    |            | 1     |  |  |  |  |  |
| Smallholder            |           |                    |            | 0     |  |  |  |  |  |
| Small-scale-commercial |           |                    | 39         | 39    |  |  |  |  |  |
| Large-scale-commercial |           |                    | 60         | 60    |  |  |  |  |  |

Comments: \*) According to annual production: 1-499, 500-24999, 25000-99999, GE 100000 chickens/farm. The HARBOE-Farm slaughter approx. 1 mill. turkeys/ear, and 60-70% are produced on HARBOE-Farm. The other 30-40% are produced by 15-20 farmers / producers (Pers. Communication with HARBOE –Farm).



# **Chapter 3.** The State of Genetic Diversity

#### Justification and Use

The purpose of this chapter is to identify the status of the diversity of breeds within species, in terms of total number of breeds, breeds at risk of being lost, and degrees of their characterization.

**Table 3.1 Breed Diversity (Number of Breeds)** 

|                  |                       |     |     | 1     | Number o | of breeds | 5   |      |              |    |  |
|------------------|-----------------------|-----|-----|-------|----------|-----------|-----|------|--------------|----|--|
|                  | Current Total At risk |     | isk | Widel | y used   | Oth       | ers | Lost |              |    |  |
|                  |                       |     |     |       |          |           |     |      | (last 50 yr) |    |  |
| Species          | L                     | Е   | L   | Е     | L        | Е         | L   | Е    | L            | Е  |  |
| Cattle           | 5                     | 19  | 4   | 10    | 1        | 4         |     | 5    | 0            | 0  |  |
| Buffalo          |                       |     |     |       |          |           |     |      |              |    |  |
| Sheep            | 2                     | 15  | 2   | 12    | 0        | 0         |     | 3    | 0            | 0  |  |
| Goats            | 1                     | 3   | 1   | 3     | 0        | 0         | 0   | 0    | 0            | 0  |  |
| Camels           |                       |     |     |       |          |           |     |      |              |    |  |
| Lamas and Alpaca |                       |     |     |       |          |           |     |      |              |    |  |
| Horses           | 3                     | 26  | 3   | 12    |          | 1         |     | 13   | 0            | 0  |  |
| Donkeys          |                       |     |     |       |          |           |     |      |              |    |  |
| Pigs             | 2                     | 4   | 2   | 0     | 0        | 4         | 0   | 0    | 0            | 0  |  |
| Chicken a)       | 2                     | 140 | 1   | NI    | NI       | NI        | NI  | NI   | 0            | NI |  |
| Turkey           | 0                     | 8   |     | NI    | 0        | 1         | NI  | 7    | 0            | NI |  |
| Ducks b)         | 1                     | 20  | 1   | NI    | 0        | 0         | 0   | NI   | 0            | NI |  |
| Geese c)         | 2                     | 11  | 2   | NI    | 0        | 0         | 0   | NI   | 0            | NI |  |
| Rabbits          | 1                     | NI  | 0   | NI    | 1        | 0         | NI  | NI   | 0            | NI |  |
|                  |                       |     |     |       |          |           |     |      |              |    |  |

### Comments:

A breed is considered as represented in Denmark if at least one of the following criteria is fulfilled:

- 1. A Danish organisation of breeders exist
- 2. Number of breeders is greater than 10
- 3. Number of breeding animals is greater than 20

L = Locally Adapted or Native E = Exotic (Recently Introduced and Continually Imported). There is and an ongoing discussion about this classification;

Breeds at risk are those with total number of breeding females and males less than 1,000 and 20, respectively; or with population size less than 1,200 and decreasing.

# NI = No information available

- a) The Danish Poultry Breeders Association distinguish among 7 plumage variants landrace hen (Danske Landhøns). However only the brown variety is considered as native. Within the native brown landrace hen a tailless tyoe ("gumpehøns") and a creeper type (luttehøns) are recognised). The second breed of chickens registered in table 3.1 as Local, is a locally adapted line of White Leghorn (Hvid Italiener), classified as being at risk.
- b) The Danish Poultry breeders Association distinguish among 3 plumage variants of Danish Landrace Duck. However only the Black white breasted is original.
- c) The native Danish Landrace Goose has two plumage variants a uniform grey (Grå dansk landgås). Both are considered as original. The second breed of geese, registered as Local in table 3.1, is a locally adapted line of the Roman goose (Hvid Italiensk gås).



Table 3.1.1 Cattle in Denmark - Breeds, breeders and cows

| Category     | Breed                         | Breeders | Cows   |
|--------------|-------------------------------|----------|--------|
| Old          |                               |          |        |
| Breeds/lines |                               |          |        |
|              | RDM – 1970                    | 26       | 117    |
|              | Jysk Kvæg                     | 25       | 55     |
|              | SDM-1965                      | 5        | 17     |
|              | Korthorn gl. avlslinie        | 7        | 15     |
|              | Jersey gl. avlslinie a)       | 1278     | 4901   |
|              | Sortbroget Jydsk Malkekvæg b) | 3        | 96     |
|              | "Ø-kvæg" c)                   | 1        | 22     |
| Other breeds |                               |          |        |
|              | SDM – Dansk Holstein          | 3468     | 398750 |
|              | RDM - Rød Dansk Malkerace     | 368      | 48,600 |
|              | DJ - Dansk Jersey             | 543      | 67650  |
|              | DRH – Dansk Red Holstein      | 24       | 5450   |
|              |                               |          |        |
|              | Limousine                     | 2931     | 8188   |
|              | Hereford                      | 2610     | 6040   |
|              | Simmental                     | 2106     | 4142   |
|              | Charolais                     | 1003     | 3559   |
|              | Aberdeen Angus                | 747      | 3045   |
|              | Scottish Highland Cattle      | 464      | 1341   |
|              | Bl. d'Áquitaine               | 328      | 1002   |
|              | Dexter                        | 166      | 477    |
|              | Galloway                      | 137      | 454    |
|              | Piemontese                    | 73       | 231    |
|              | Grauvieh (Austrian)           | 62       | 218    |
|              | Belgian Blue and White        | 119      | 166    |
|              | Shorthorn                     | 83       | 169    |
|              | Braunvieh (Swiss)             | 21       |        |
|              | Gelbvieh (German)             | 16       |        |
| •            | Salers                        | 14       | 1      |
|              | Skovkvæg d)                   | 1        |        |

Sources: Kvægdatabasen, 2002, Rapport nr. 92, 2001 fra Landbrugets Rådgivningscenter, IEC rapport maj 2002 fra Forskningsstyrelsen.

- a) Jersey with all ancestors in 5 generations being Danish Jersey (100% DJ), the number includes all females.
- b) Sortbroget Jydsk Malkekvæg (SJM) is regarded as a special old (primitive) type of Jysk Kvæg. The number of animals includes all females.
- c) "Ø-Kvæg" is a primitive type of cattle, originating from a single herd from the island Agersø. The number includes all females.
- d) Skovkvæg is a beef syntetetic experimental population



Table 3.1.2 Breeds of sheep in Denmark, breeders and breeding females and males

| Category          | Breed                | Breeders | Females | Males |
|-------------------|----------------------|----------|---------|-------|
| Old Danish breeds | Dansk Landfår        | 11       | 104     | 20    |
|                   | Marsk                | 22       | 343     | 44    |
|                   | Ertebølle linien **) | 4        | 52      | 13    |
| Other Breeds      | Oxforddown           | 64       | 861     | 113   |
|                   | Shropshire           | 154      | 2446    | 275   |
|                   | Leicester            | 30       | 493     | 59    |
|                   | Texel                | 130      | 2720    | 281   |
|                   | Dorset               | 45       | 1022    | 104   |
|                   | Suffolk              | 58       | 889     | 110   |
|                   | Gute                 | 3        | 28      | 3     |
|                   | Såne*                | 24       | 231     | 34    |
|                   | Merino               | 18       | 229     | 48    |
|                   | Østfrisisk Malkefår  | 2        | 47      | 5     |
|                   | Gotlandsk Pelsfår    | 19       | 217     | 27    |
|                   | Rygja                | 8        | 47      | 12    |
|                   | Islandsk får         | 4        | 70      | 7     |
|                   | Finuld               | 14       | 251     | 25    |
|                   | Spel                 | 21       | 234     | 35    |

Source: Landbrugets Rådgivningscenter, Rapport nr. 94, 2001 and personal communications.

Table 3.1.3 Breeds of goats in Denmark, breeders and breeding females and males (year 2000).

| Old Danish breeds | Dansk Landged         | 22  | 151 | 28  |
|-------------------|-----------------------|-----|-----|-----|
|                   | Dansk Landrace Ged *) | 13  | 358 | 19  |
| Other breeds      | Mohair                | 98  | 803 | 169 |
|                   | Nubisk                | 28  | 106 | 39  |
|                   | Boer                  | 107 | 642 | 179 |
|                   | Saanen                | 1   | 10  | 3   |

Sources: Landbrugets Rådgivningscenter, Rapport nr. 94, 2001, and IEC rapport fra Forskningsstyrelsen 2002

<sup>\*)</sup> New breed founded in Denmark

<sup>\*\*)</sup> Special line of Dansk Landfår

<sup>\*)</sup> Animals with pedigree information



Table 3.1.4 Breeds of pigs in Denmark, breeders and breeding females and males (year 2000).

| Category     | Breed               | Breeders | Females | Males |
|--------------|---------------------|----------|---------|-------|
| Old breeds   | DL-1970             | 14       | 66      | 26    |
|              | Sortbroget Landrace | 17       | 46      | 22    |
| Other breeds | Landrace            | *        | 3500    | 283   |
|              | Yorkshire           | *        | 2636    | 277   |
|              | Duroc               | *        | 2149    | 1151  |
|              | Hampshire           | *        | 958     | 57    |

Sources: Danske Slagterier og Genressourceudvalget, 2001

Comments:

The nucleous breeding program for "other breeds" is the breeding program by Danske Slagteriers avlsprogram "DANAVL". It involves 43 nucleous breeders with 52 breeding units. The number of males are boars available through AI.

Table 3.1.5 Breeds of horses in Denmark, breeders and breeding females and males (year 2000).

| Category        | Breed                        | Females | Males |
|-----------------|------------------------------|---------|-------|
| Old Breeds      | Den Jydske Hest              | 242     | 33    |
|                 | Frederiksborger              | 188     | 29    |
|                 | Knabstrupper (renavlslinie)  | 15      | 5     |
| Other breeds a) | Dansk Varmblod               | 3464    | 176   |
|                 | Oldenborger                  | 589     | 59    |
|                 | Trakehner                    | 204     | 24    |
|                 | Lipizzaner                   | 16      | 3     |
|                 | Knabstrupper (krydsningsavl) | 165     | 31    |
|                 | Palomino                     | 71      | 9     |
|                 | Pinto                        | 193     | 26    |
|                 | Fjordhest                    | 701     | 50    |
|                 | Shire                        | 18      | 1     |
|                 | Belgier, Ardenner            | 231     | 32    |
|                 | Araber OX, DSAH, Shagya      | 60      | 12    |
|                 | Fuldblod                     | 252     | 35    |
|                 | Travere                      | 1500    | 135   |
|                 | Haflinger                    | 106     | 11    |
|                 | Den Islandske Hest           | 1744    | 142   |
|                 | Dartmoor pony                | 40      | 8     |
|                 | Connemara                    | 88      | 21    |
|                 | Welsh Cob                    | 221     | 55    |
|                 | New Forest pony              | 191     | 23    |
|                 | Shetlands pony               | 848     | 147   |
|                 | Gotlands Russ                | 22      | 5     |
|                 | Dansk Sportspony Avl         | 175     | 26    |
|                 | Dansk Miniaturehesteforening | 69      | 13    |

**Source:** 

<u>http://www.lr.dk/heste</u>, Dansk Travsports Centralforbund, and Foreningen til Den ædle hesteavls fremme ( Dansk Fuldblod)



Table 3.2 Number of breeds for which characterization has been carried out (Number of breeds)

| Genetic distance | Breeds<br>and              | Valuation  | Performance | Genetic         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------|----------------------------|------------|-------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | crosses<br>evaluation      |            | recording   |                 | Molecular<br>evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                | 12                         |            | 14          | 14              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                            |            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                | 0                          |            | 6           | 6               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 1                          |            | 4           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  |                            |            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                            |            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                            |            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  |                            |            |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3                | 2                          |            | 4           | 4               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 0                          |            | 0           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 0                          |            | 0           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 0                          |            | 0           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 0                          |            | 0           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0                | 0                          |            | 0           | 0               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 3<br>0<br>3<br>0<br>0<br>0 | evaluation | evaluation  | evaluation   14 | evaluation         1         12         14         14           3         0         6         6         6           0         1         4         0           3         2         4         4         4           0         0         0         0         0         0           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         < |



# **Chapter 4.** The State of Utilization of AnGR (Use and Development)

#### Justification and Use

The purpose of this chapter is to identify the main use of animal genetic resources available in the country, especially the number of breeds that are really active in contributing to food and agricultural products. In addition, it focuses on the status of development of AnGR, their current breeding strategies, gaps and needs, and the involvement of different stakeholders in developing breeding systems.

Table 4.1 Relative importance of livestock products and services within species (%)

| Species          |      |      |    |       |                 |   |               |   |       |    |          |   |          | / .        |
|------------------|------|------|----|-------|-----------------|---|---------------|---|-------|----|----------|---|----------|------------|
|                  | Milk | Mea. |    | S iji | Skiring Skiring |   | Ferilise ment |   | Cult. |    | Fuel (a) |   | Environs | Total ment |
| Cattle           | 66   | 15   |    |       | 3               |   | 3             |   | 4     | 4  | 0        |   | 5        | 100        |
| Buffalo          |      |      |    |       |                 |   |               |   |       |    |          |   |          | 0          |
| Sheep            |      | 80   |    | 8     | 2               |   | 0             |   | 1     | 3  |          |   | 6        | 100        |
| Goats            | 20   | 10   |    | 40    | 5               | 0 | 0             |   | 10    | 10 | 0        |   | 5        | 100        |
| Camels           |      |      |    |       |                 |   |               |   |       |    |          |   |          | 0          |
| Lamas and Alpaca |      |      |    |       |                 |   |               |   |       |    |          |   |          | 0          |
| Horses           |      | 15   |    | 0     | 0               | 0 | 5             | 5 | 5     | 65 | 0        |   | 5        | 100        |
| Donkeys          |      |      |    |       |                 |   |               |   |       |    |          |   |          | 0          |
| Pigs             |      | 95   |    | 0     |                 | 0 | 3             |   | 1     | 1  |          |   |          | 100        |
| Chicken          |      | 58   | 27 |       |                 |   | 2             |   | 3     | 10 |          |   |          | 100        |
| Turkey           |      | 98   |    |       |                 |   |               |   | 1     | 1  |          |   |          | 100        |
| Ducks            |      | 95   |    |       |                 |   |               |   | 3     | 2  |          |   |          | 100        |
| Geese            |      | 80   |    |       |                 |   |               |   | 10    | 10 |          |   |          | 100        |
| Rabbits          |      | 50   |    |       |                 |   |               |   | 50    |    |          |   |          | 100        |
| Mink             | 0    | 0    | 0  | 0     | 100             | 0 | 0             | 0 | 0     | 0  | 0        | 0 | 0        | 100        |

#### Comments:

• Think of the food and agricultural outputs as products that have a relative contribution to national production. Therefore, assign relative contributions for the important products listed below, based on a thorough analyses and valuation of data available in the country (sum of each species = 100).



Table 4.2 Relative importance of species within livestock products and services (%)

| Species | Milk | Mea, | , S. J. | , di la | Skin | . A | Formisco Contraction of the Cont | D'all et | Cutto | A Social States | Fuel | Four Property of the Park Prop | Environ | lejuobeleju<br>Iejuobeleju |
|---------|------|------|---------------------------------------------|---------------------------------------------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-----------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|
| Cattle  | 100  | 14   |                                             |                                             | 8    |     | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 40    | 10              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60      |                            |
| Sheep   |      | 2    |                                             | 60                                          |      |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 10    | 5               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18      |                            |
| Goats   |      | 1    |                                             | 40                                          |      |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       | 2               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2       |                            |
| Horses  |      | 1    |                                             |                                             |      |     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 20    | 73              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20      |                            |
| Pigs    |      | 72   |                                             |                                             |      |     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Chicken |      | 7    | 100                                         |                                             |      |     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 30    | 10              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Turkey  |      | 2    |                                             |                                             |      |     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Ducks   |      | 1    |                                             |                                             |      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Geese   |      |      |                                             |                                             |      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Rabbits |      |      |                                             |                                             |      |     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Mink    |      |      |                                             |                                             | 92   |     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
| Total   | 100  | 100  | 100                                         | 100                                         | 100  | 0   | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0        | 100   | 100             | 0    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100     |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |
|         |      |      |                                             |                                             |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |       |                 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                            |

#### Comments:

• Assign relative contribution values for each product as a % of total output of that product, based on a thorough analyses of data available in the country (sum of each column = 100).



Table 4.3 Number of widely used breeds with breeding strategies (No. of breeds)

|                  |                        | Bre                | eeding strategi    | es   |
|------------------|------------------------|--------------------|--------------------|------|
| Species          | Total number of breeds | Purebred selection | Cross-<br>breeding | Both |
| Cattle           | 26                     | 16                 | 0                  | 0    |
| Buffalo          |                        |                    |                    |      |
| Sheep            | 17                     | 6                  | 0                  | 0    |
| Goats            | 4                      | 3                  | 0                  | 0    |
| Camels           |                        |                    |                    |      |
| Lamas and Alpaca |                        |                    |                    |      |
| Horses           | 16                     | 16                 | 2                  | 1    |
| Donkeys          |                        |                    |                    |      |
| Pigs             | 6                      | 4                  | 4                  | 4    |
| Chicken          |                        | 2                  | 2                  | 2    |
| Turkey           |                        |                    |                    |      |
| Ducks            |                        |                    |                    |      |
| Geese            |                        |                    |                    |      |
| Rabbits          |                        |                    |                    |      |
|                  |                        |                    |                    |      |

Table 4.4 Number of breeds with current breeding strategies and tools being used (No. of breeds)

|           |                   | Breedin  | g strategies             | Tools                    |           |    |    |                       |
|-----------|-------------------|----------|--------------------------|--------------------------|-----------|----|----|-----------------------|
| Species   | Breeding<br>goals | Designed | Designed and implemented | Individual identificatio | Recording | AI | ET | Genetic<br>evaluation |
| Cattle    | 16                | 16       | 16                       | 24                       | 16        | 18 | 10 | 16                    |
| Buffalo   |                   |          |                          |                          |           |    |    |                       |
| Sheep     | 6                 | 6        | 6                        | 17                       | 6         | 0  | 0  | 6                     |
| Goats     | 4                 | 4        | 4                        | 4                        | 4         | 0  | 3  | 4                     |
| Camels    |                   |          |                          |                          |           |    |    |                       |
| Lamas and |                   |          |                          |                          |           |    |    |                       |
| Horses    |                   |          |                          |                          |           |    |    |                       |
| Donkeys   |                   |          |                          |                          |           |    |    |                       |
| Pigs      | 4                 | 4        | 4                        | 4                        | 4         | 4  | 0  | 4                     |
| Chicken   |                   |          |                          |                          |           |    |    |                       |
| Turkey    |                   |          |                          |                          |           |    |    |                       |
| Ducks     |                   |          |                          |                          |           |    |    |                       |
| Geese     |                   |          |                          |                          |           |    |    |                       |
| Rabbits   |                   |          |                          |                          |           |    |    |                       |
| Mink      | 1                 | 1        | 1                        | 1                        | 1         | 0  | 0  | 1                     |

Comments: AI = Artificial Insemination; ET = Embryo Transfer.



Table 4.5 State of the art of technologies / methodologies used in breeding strategies

|                                     | Use      | d for:   |
|-------------------------------------|----------|----------|
| Technology or Methodology           | Research | Breeders |
|                                     |          |          |
| Multi-trait selection index         | 100      | 100      |
| construction                        |          |          |
| Optimization tools for breeding     | 100      | 100      |
| plans                               |          |          |
| Electronic database related to      | 100      | 100      |
| recording schemes                   |          |          |
| Genetic evaluation Software for:    | 100      | 100      |
| phenotypic selection breeding       |          |          |
| Reproductive technologies (Al, ET,  | 100      | 50       |
| etc) mainly applied in dairy cattle |          |          |
| Microsatellite linkage maps for     | 100      | 0        |
| QTL identification for Marker       |          |          |
| Other technology (specify)          | 50       | 0        |
|                                     |          |          |
|                                     |          |          |
|                                     |          |          |

Comments: Assign a percentage to indicate the extent that the technology or methodology is being used at research institutions or by breeder's associations in the country.

Table 4.6 Role of stakeholders in the implementation of tools for the development of AnGR

| Stakeholders       | Breeding<br>goals | Individual identification | Recording | Artificial insemination | Genetic evaluation |
|--------------------|-------------------|---------------------------|-----------|-------------------------|--------------------|
| Federal Government | 1                 | 5                         | 1         | 1                       | 1                  |
| State Government   |                   |                           |           |                         |                    |
| Local Government   |                   |                           |           |                         |                    |
| Breeder's          | 5                 | 5                         | 5         | 5                       | 5                  |
| Private companies  |                   |                           |           |                         |                    |
| Research           | 4                 | 1                         | 1         | 1                       | 5                  |
| NGO's              | 3                 | 1                         | 1         | 1                       | 1                  |
|                    |                   |                           |           |                         |                    |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) based on thorough analyses of data available, to indicate the role of involvement of each stakeholder on the implementation of tools that support the development of AnGR.



Table 4.7 Involvement of stakeholders in activities related to the development of AnGR

| Stakeholders           | Legislation | Breeding | Infrastructure | Human | Farmer's |
|------------------------|-------------|----------|----------------|-------|----------|
| Federal Government     |             |          |                |       |          |
| State Government       | 5           | 1        |                | 3     | 1        |
| Local Government       | 1           | 1        |                | 3     | 1        |
| Breeder's associations | 1           | 5        | 5              | 4     | 5        |
| Private companies      | 1           | 1        | 5              | 1     | 1        |
| Research               | 1           | 3        | 1              | 3     | 1        |
| NGO's                  | 1           | 1        | 1              | 3     | 1        |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) based on thorough analyses of data available, to indicate the degree of involvement of each stakeholder on activities that support the development of AnGR.

Table 4.8 Stakeholders preference for animal genetic resources

| Stakeholders           | Locally adapted breeds | Imported within region | Imported exotic breeds |
|------------------------|------------------------|------------------------|------------------------|
| Federal Government     |                        |                        |                        |
| State Government       | 5                      |                        | 1                      |
| Local Government       |                        |                        | 1                      |
| Breeder's associations | 2                      |                        | 5                      |
| Private companies      |                        |                        | 5                      |
| Research               | 3                      |                        | 3                      |
| NGO's                  | 5                      |                        | 1                      |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) based on a thorough analyses of data available, to indicate the degree of preference of the various types of AnGR by stakeholders.

Table 4.9 Priority of needs for utilization of technologies for the development of AnGR

|                               | Needs     |          |                     |                        |  |  |
|-------------------------------|-----------|----------|---------------------|------------------------|--|--|
| Technology                    | Knowledge | Training | Financial resources | Breeder's organization |  |  |
| Recording                     | 1         | 1        | 1                   | 3                      |  |  |
| Genetic evaluation            | 1         | 1        | 3                   | 3                      |  |  |
| AI / ET                       | 3         | 3        | 3                   | 3                      |  |  |
| Molecular techniques          | 4         | 5        | 5                   | 3                      |  |  |
| Breed organisation techniques | 1         | 1        | 5                   | 5                      |  |  |

- AI= Artificial Insemination; ET= Embryo Transfer
- Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the priority of solving specific needs in order to use technologies to support the development of AnGR.



# **Chapter 5.** The State of Conservation of AnGR

# Justification and Use

The purpose of this chapter is to identify activities in in-situ and ex-situ conservation programmes, the degree of involvement of stakeholders and future needs for such programmes.

Table 5.1 Current number of breeds in managed conservation programmes

|                  | Number of locally adapted breeds at risk |                 |                 |                          |  |  |  |  |
|------------------|------------------------------------------|-----------------|-----------------|--------------------------|--|--|--|--|
| Species          | Total                                    | Managed in situ | Managed ex situ | Both<br>(in and ex situ) |  |  |  |  |
| Cattle           | 5                                        | 5               | 4               | 4                        |  |  |  |  |
| Buffalo          |                                          |                 |                 |                          |  |  |  |  |
| Sheep            | 2                                        | 2               | 1               | 1                        |  |  |  |  |
| Goats            | 1                                        | 1               | 0               | 0                        |  |  |  |  |
| Camels           |                                          |                 |                 |                          |  |  |  |  |
| Lamas and Alpaca |                                          |                 |                 |                          |  |  |  |  |
| Horses           | 3                                        | 3               | 0               | 0                        |  |  |  |  |
| Donkeys          |                                          |                 |                 |                          |  |  |  |  |
| Pigs             | 2                                        | 2               | 2               | 2                        |  |  |  |  |
| Chicken          | 1                                        | 1               | 0               | 0                        |  |  |  |  |
| Turkey           | 1                                        | 0               | 0               | 0                        |  |  |  |  |
| Ducks            | 1                                        | 1               | 0               | 0                        |  |  |  |  |
| Geese            | 1                                        | 1               | 0               | 0                        |  |  |  |  |
| Rabbits          | 0                                        |                 | 0               | 0                        |  |  |  |  |
|                  |                                          |                 |                 |                          |  |  |  |  |

- *In situ* conservation: includes all measures to maintain live animal breeding populations, including those involved in active breeding strategies in the agro-ecosystem where they either developed or are now normally found, together with husbandry activities that are undertaken to ensure the continued contribution of these resources to sustainable food and agricultural production, now and in the future.
- Ex situ conservation: genetic material within living animals but out of the environment in which it developed (Ex situ in vivo), or external to the living animal in an artificial environment, usually under cryogenic conditions including, inter alia, the cryoconservation of semen, oocytes, embryos, cells or tissues (Ex situ in vitro). Note that ex situ conservation and ex situ preservation are considered here to be synonymous.



Table 5.2 Current number of breeds receiving incentives and for which various tools for management of *ex situ* conservation programmes are used

|                  | lr   | ncentive | s      | Tools   |                |                   |         |            |
|------------------|------|----------|--------|---------|----------------|-------------------|---------|------------|
| Species          | Gov. | NGO      | Market | Semen   | <b>Embryos</b> | <b>DNA/Tissue</b> | In vivo | Monitoring |
|                  |      |          |        | storage | storage        | storage           |         | system     |
| Cattle           | 4    | 6        | 0      | 3       | 2              | 0                 | 6       | 6          |
| Buffalo          |      |          |        |         |                |                   |         |            |
| Sheep            | 2    | 2        | 0      | 1       | 0              | 0                 | 2       | 2          |
| Goats            | 0    | 1        | 0      | 0       | 0              | 0                 | 1       | 1          |
| Camels           |      |          |        |         |                |                   |         |            |
| Lamas and Alpaca |      |          |        |         |                |                   |         |            |
| Horses           | 3    | 3        | 0      | 2       | 0              | 0                 | 3       | 3          |
| Donkeys          |      |          |        |         |                |                   |         |            |
| Pigs             | 2    | 2        | 0      | 2       | 1              | 0                 | 2       | 2          |
| Chicken          | 0    | 0        | 0      | 0       | 0              | 0                 | 0       | 0          |
| Turkey           | 0    | 0        | 0      | 0       | 0              | 0                 | 0       | 0          |
| Ducks            | 1    | 1        | 0      | 0       | 0              | 0                 | 0       | 0          |
| Geese            | 1    | 1        | 0      | 0       | 0              | 0                 | 0       | 0          |
| Rabbits          | 0    | 0        | 0      | 0       | 0              | 0                 | 0       | 0          |
|                  |      |          |        |         |                |                   |         |            |

#### Comments:

- In vivo, such as zoological garden, farm park, etc.
- Incentives means any kind of support (human and financial resources, tax waving, higher prices, etc.) that stimulates conservation programmes of AnGR
- Monitoring system refers to the number of schemes in which more than 10% of population size is conserved.

Table 5.3 Current number of breeds receiving incentives and for which tools for *in situ* conservation programmes are used

|                  | Incentives |     |        |         |           | Technica | al tools |        |
|------------------|------------|-----|--------|---------|-----------|----------|----------|--------|
| Species          | Gov.       | NGO | Market | Private | Recording | Al       | ET       | Others |
| Cattle           | 3          | 4   |        |         | 4         | 4        | 3        |        |
| Buffalo          |            |     |        |         |           |          |          |        |
| Sheep            | 1          | 2   |        |         | 2         |          |          |        |
| Goats            | 0          | 1   |        |         | 1         |          |          |        |
| Camels           |            |     |        |         |           |          |          |        |
| Lamas and Alpaca |            |     |        |         |           |          |          |        |
| Horses           | 3          | 3   |        |         | 3         |          |          |        |
| Donkeys          |            |     |        |         |           |          |          |        |
| Pigs             | 2          | 2   |        |         | 2         | 2        |          |        |
| Chicken          |            |     |        |         |           |          |          |        |
| Turkey           |            |     |        |         |           |          |          |        |
| Ducks            | 1          | 1   |        |         |           |          |          |        |
| Geese            | 1          | 1   |        |         |           |          |          |        |
| Rabbits          |            |     |        |         |           |          |          |        |
|                  |            |     |        |         |           |          |          |        |

- AI = Artificial Insemination; ET = Embryo Transfer.
- Incentives means any kind of support (human and financial resources, tax waving, higher prices, etc.) that stimulates conservation programmes of AnGR.



Table 5.4 Stakeholders involvement in the management of conservation programmes

| Stakeholders                       | In situ Conservation | Ex situ Conservation |
|------------------------------------|----------------------|----------------------|
| Government                         | 5                    | 5                    |
| Breeder's associations             | 5                    | 1                    |
| Private companies                  | 1                    | 1                    |
| Research institutions/universities | 2                    | 3                    |
| NGO's                              | 5                    | 3                    |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) based on thorough analyses of data available, to indicate the degree of involvement of each stakeholder on conservation programmes.

Table 5.5 Priority of needs for utilization of technologies for *in situ* conservation programmes

|                                | Needs     |          |           |            |
|--------------------------------|-----------|----------|-----------|------------|
| Technology                     | Knowledge | Training | Financial | Technology |
|                                |           |          | resources |            |
| Recording                      | 1         | 1        | 5         | 1          |
| Genetic evaluation             | 1         | 1        | 5         | 1          |
| AI / ET                        | 3         | 4        | 5         | 3          |
| Molecular techniques           | 3         | 4        | 5         | 1          |
| Breeder improvement techniques | 1         | 1        | 5         | 1          |

- AI= Artificial Insemination; ET= Embryo Transfer
- Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the priority of solving specific needs in order to use technologies to support conservation programmes.



# Chapter 6. The State of Policy Development and Institutional Arrangements for AnGR

# Justification and Use

The purpose of this chapter is to identify policies related to the use, development and conservation of animal genetic resources. It summarises needs and identifies the main priorities to be considered in policy development for animal genetic resources management.

Table 6.1. Effects of existing policies and legal instruments on the utilization (use and development) of AnGR

|                  | Urban/peri-urban<br>systems |         | Rural production |         |
|------------------|-----------------------------|---------|------------------|---------|
| Species          | Industrial Small-           |         | Industrial       | Small-  |
| opecies          | systems                     | holder  | systems          | holder  |
|                  | Systems                     |         | Systems          |         |
|                  |                             | systems |                  | systems |
| Cattle           |                             |         | 2                | 2       |
| Buffalo          |                             |         |                  |         |
| Sheep            |                             |         | 2                | 2       |
| Goats            |                             |         | 2                | 2       |
| Camels           |                             |         |                  |         |
| Lamas and Alpaca |                             |         |                  |         |
| Horses           |                             |         | 1                | 2       |
| Donkeys          |                             |         |                  |         |
| Pigs             |                             |         | 2                | 2       |
| Chicken          |                             |         | 2                | 2       |
| Turkey           |                             |         |                  |         |
| Ducks            |                             |         | 2                | 2       |
| Geese            |                             |         | 1                | 1       |
| Rabbits          |                             |         | 1                | 1       |
|                  |                             |         |                  |         |

Comments: Assign a score (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the extent that existing policies and legal instruments support the use and development of AnGR.

Note: The economic conditions for animal production are influenced by legislation that regulates production and production conditions. A growing interest for utilisation and conservation of AnGR is observed among Smallholders and part time farmers.



Table 6.2 The focus of current policies on activities related to the utilization (use and development) of AnGR

|         | Activities           |                               |                                  |                                  |  |
|---------|----------------------|-------------------------------|----------------------------------|----------------------------------|--|
| Species | Use of exotic breeds | Use of locally adapted breeds | Training, research and extension | Organization of breeders/farmers |  |
| Cattle  | 1                    | 3                             | 5                                | 4                                |  |
| Sheep   | 1                    | 3                             | 5                                | 3                                |  |
| Goats   | 1                    | 2                             | 3                                | 1                                |  |
| Horses  | 1                    | 3                             | 3                                | 1                                |  |
| Pigs    | 1                    | 2                             | 4                                | 5                                |  |
| Chicken | 1                    | 4                             | 2                                | 1                                |  |
| Ducks   | 1                    | 4                             | 2                                | 2                                |  |
| Geese   | 1                    | 3                             | 2                                | 2                                |  |
| Mink    | 1                    | 1                             | 1                                | 1                                |  |
|         |                      |                               |                                  |                                  |  |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the extent that current policies support activities related to the utilization of AnGR.

Table 6.3 Prioritising the needs to enable the development of AnGR policies

|                            |             | Required    |           |  |
|----------------------------|-------------|-------------|-----------|--|
| Needs                      | Immediately | Medium term | Long term |  |
| Financial resources        | 5           | 3           | 3         |  |
| Organizatorial structures  | 3           | 3           | 3         |  |
| Research - human resources | 3           | 3           | 3         |  |

Comments: identify the main needs for policy development and specify if it is critical (immediately required) or important in the medium or long term.



Table 6.4 The priority of future needs in policy development for AnGR conservation programmes

| •                | Policy development related to: |                |                    |                     |                           |  |
|------------------|--------------------------------|----------------|--------------------|---------------------|---------------------------|--|
| Species          | Technology                     | Infrastructure | Human<br>resources | Financial resources | Organizational structures |  |
| Cattle           | 2                              | 1              | 3                  | 5                   | 4                         |  |
| Buffalo          |                                |                |                    |                     |                           |  |
| Sheep            | 2                              | 1              | 3                  | 5                   | 4                         |  |
| Goats            | 2                              | 1              | 3                  | 5                   | 4                         |  |
| Camels           |                                |                |                    |                     |                           |  |
| Lamas and Alpaca |                                |                |                    |                     |                           |  |
| Horses           | 2                              | 1              | 3                  | 5                   | 4                         |  |
| Donkeys          |                                |                |                    |                     |                           |  |
| Pigs             | 2                              | 1              | 3                  | 5                   | 4                         |  |
| Chicken          | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Turkey           | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Ducks            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Geese            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Rabbits          | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Mink             | 2                              | 1              | 3                  | 5                   | 4                         |  |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the priority for the development of policies to support AnGR conservation programmes.

Table 6.5 The priority of future needs in policy development for the utilization (use and development) of AnGR

|                  | Policy development related to: |                |                    |                     |                           |  |
|------------------|--------------------------------|----------------|--------------------|---------------------|---------------------------|--|
| Species          | Technology                     | Infrastructure | Human<br>resources | Financial resources | Organizational structures |  |
| Cattle           | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Buffalo          |                                |                |                    |                     |                           |  |
| Sheep            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Goats            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Camels           |                                |                |                    |                     |                           |  |
| Lamas and Alpaca |                                |                |                    |                     |                           |  |
| Horses           | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Donkeys          |                                |                |                    |                     |                           |  |
| Pigs             | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Chicken          | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Turkey           | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Ducks            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Geese            | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Rabbits          | 2                              | 1              | 3                  | 4                   | 5                         |  |
| Mink             | 2                              | 1              | 3                  | 4                   | 5                         |  |
|                  |                                |                |                    |                     |                           |  |
|                  |                                |                |                    |                     |                           |  |
|                  |                                |                |                    |                     |                           |  |

Comments: Assign scores (1 = none, 2 = little, 3 = regular, 4 = more, 5 = high) to indicate the priority for the development of policies to support the utilization of AnGR.